数学六年级上册知识点
在我们上学期间,不管我们学什么,都需要掌握一些知识点,知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。哪些才是我们真正需要的知识点呢?以下是小编帮大家整理的数学六年级上册知识点,欢迎大家分享。
数学六年级上册知识点1一、填空(16分)
1、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。
2、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
3、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
4、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。
5、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。
6、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。
7、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。
8、在一张长32厘米,宽16厘米的长方形内画半径是4厘米的圆,这样的圆最多能画(__)个,这些圆的面积和是(__)。
二、判断题。(8分)
1、圆的周长是它的直径的π倍。(__)
2、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
3、半径为1厘米的圆的周长是3.14厘米。(__)
4、一个圆的周长是12.56厘米,面积是12.56平方厘米。(__)
5、圆的半径由6分米增加到9分米,圆的面积增加了45平方分米。(__)
6、圆内最长的线段是直径。(__)
7、圆是轴对称图形,它有无数条对称轴。(__)
8、半个圆的周长就是圆周长的一半。(__)
三、选择(9分)
1、3.14(__)π
A、 = B、 > C
2、当周长相等时,面积的是(__)
A、平行四边形B、长方形C、正方形D、圆
数学六年级上册知识点2一、选择
1、用圆规画圆,圆规两脚的距离就是所画圆额(__)
A、圆心B、半径C、直径
2、圆中两端都在圆上的线段(__)
A、一定是圆的半径B、一定是圆的直径C、无法确定
3、在日常生活中,我们所见的下水井盖一般都制成(__)。
A、正方形B、长方形C、圆形
4、在同一个圆中最长的一条线段是(__)。
A、半径B、直径C、直线
5、画一个直径为5厘米的圆,圆规两脚之间的距离是(__)
A、5厘米B、10厘米C、2.5厘米
二、判断并改错。
1、所有的半径都相等,所有的直径都相等。(__)
2、圆的半径越长,这个圆就越大。(__)
3、画图时,圆规两脚尖之间的距离就是圆的半径。(__)
4、圆沿一条直线滚动时,圆心在一条直线上运动。(__)
5、两个圆的大小一样,它们的半径一定相等。(__)
6、一条直径可以分成两条半径,两条半径也就是一条直径。(__)
7、平行四边形、长方形、正方形、圆形都是平面图形中的直线图形。(__)
8、经过一点可以画无数个圆。(__)
9、经过圆心的线段一定是直径。(__)
10、圆心相同的圆,大小也相等。(__)
三、按要求画图。
1、画一个半径为1厘米的圆。
2、以点O为圆心,分别画两个大小不同的圆。
3、用你喜欢的方法画一个半圆,并标出它的圆心,半径和直径。
4、在下面长方形和正方形中各画一个的圆。r=(__)d=(__)
四、填空。
1、图中已学过的图形有(__)、(__)、(__)、(__)。
2、正方形的周长是(__),小圆的直径是(__),半径是(__)。
3、直角梯形的高与上底都是(__),下底是(__),面积是(__)。
4、大三角形的底边长是(__),高是(__),面积是(__)。
五、解决问题
1、在边长为12米的正方形中剪直径为3厘米的圆,你最多能剪多少个?
2、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?
数学六年级上册知识点31、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4、分数乘整数:数形结合、转化化归
5、倒数:乘积是1的两个数叫做互为倒数。
6、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
8、小数的倒数:
普通算法:找一个小数的倒数,例如0。25,把0。25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1
9、用1计算法:也可以用1去除以这个数,例如0。25,1/0。25等于4,所以0。25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10、分数除法:分数除法是分数乘法的逆运算。
11、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的 ……此处隐藏25696个字……长/竹竿影长=大树高/大树影长
第六单元分数四则运算
分数四则运算和整数一样:先算乘除,后算加减,有括号的先算括号里的。一、定律
(1)加法交换律:交换两个加数的位置,和不变:a+b=b+a
(2)加法结合律:三个数相加,先用前两个数相加,再加上第三个数,或者先用后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)
(3)乘法交换律:交换两个乘数的位置,积不变。a×b=b×a
(4)乘法结合律:三个数相乘,先用前两个数相乘,再乘以第三个数,或者先用后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)(5)乘法分配律:ac+bc=(a+b)cac-bc=(a-b)c二、简便运算:(一)加法
三个数相加,先找出加数中分母相同的加数;运用加法交换律或结合律把这两个加数移到一起,在这个算式中先算这两个数的和,再用这两个的和加上另一个数。(二)减法
减法的性质:一个数连续减去几个数,等于减去这几个数的和。
即:a-b-c=a-(b+c)或a-b+c=a-(b-c);a-(b+c)=a-b-c或a-(b-c)=a-b+c
1、在分数四则混合运算中,如果只有加减法,并且在括号里面和外面有分母相同的分数,则利用减法的性质进行去括号计算。即:a-(b+c)=a-b-ca-(b-c)=a-b+c
2、在分数四则混合运算中,如果只有加减法,被减数外的两个分数是分母相同的分数,则利用减法的性质进行加括号计算即:a-b-c=a-(b+c)或a-b+c=a-(b-c)(四)乘、除法
1、在四则混合运算中,先观察题中是否有相同的分数。如果有且相同的分数分布在加减号的两侧,则可以根据乘法分配律来简便计算。即:ac+bc=(a+b)cac-bc=(a-b)c2、分数除法:除以一个数等于乘以这个数的倒数。
3、除法的性质:一个数连续除以几个数,等于除以这几个数的积。
即:a÷b÷c=a÷(b×c)或a÷b×c=a÷(b÷c);a÷(b×c)=a÷b÷c或a÷(b÷c)=a÷b×c五、解决实际问题
已知A和B是A的几分之几,求B?A×几分之几=B
已知A和B比A多几分之几,求B?A+A×几分之几=B
已知A和B比A少几分之几,求B?
A×几分之几=B
探索与实践结论:把一个长方形的长和宽分别增加1/2,即长和宽变为原来的3/2,现在的面积变为原来的9/4,即为:现在面积:原来面积的=现在长:原来长=现在宽:原来宽注:在计算的过程中,根据实际情况确定使用的简便方法。
第七单元:解决问题的策略
一、替换的策略
1、根据题目意思,写出等量关系。2、把相等的量互换。3、根据题意列方程解答。
二、假设的策略(鸡兔同笼问题及延伸题)例:(大船坐的人数×总船数-总人数)÷(大船坐的人数-小船坐的人数)=小船数(总人数-小船坐的人数×总船数)÷(大船坐的人数-小船坐的人数)=大船数假设全部为其中的一种,用假设的这种×总头数和总脚数作比较谁大谁作被减数,再除以两种脚之差,所求出的为另一种的只数。
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)(4)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
(5)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元。它的解法显然可套用上述公式。)
第八单元:可能性
求摸到某种球的可能是几分之几?
这种球的个数÷总个数=这种球的个数/总个数
第九单元、认识百分数
1、百分数:表示一个数是另一个数的百分之几的数叫百分数,又叫百分比或百分率。通常在原来的分子后面加“%”来表示:如30/100可以写成30%注:在用%号表示百分数中,后面带单位的百分之几不能用%表示。2、百分数与小数的互化(1)、小数化为百分数:一位小数写成十分之几,分子分母同时扩大10倍;两位小数写成百分之几;三位小数写成千分之几,分子分母同时缩小10倍……。(或把小数的小数点向右移动两位,后面加上百分号)
(2)百分数化为小数:把百分数的分子分母同时缩小100倍(即把百分数的分子小数点向左移动两位)
3、分数与小数的互化
(1)分数化为小数:分数的分子除以分母,结果保留三位小数
(2)小数化为分数:一位小数写成十分之几;两位小数写成百分之几;三位小数写成千分之几;然后约成最简分数。4、百分数与分数的互化(1)分数化为百分数:
A:分母是100的因数或倍数,直接进行通分或约分把分母化为100。
B:分母不是100的因数或倍数,用分子除以分母,所得结果保留三位小数,再根据小数化百分数的方法把这个小数化为百分数。(2)百分数化分数:
A:分子为整数,直接进行约分,约成最简分数。
B:分子为小数,先把百分数扩大相应的倍数,化成分子为整数的分数,再进行约分,约成最简分数。
5、求一个数是另一个数的百分之几?
一个数÷另一个数×100%6、出勤率=出勤人数÷总人数×100%缺勤率=缺勤人数÷总人数×100%发芽率=发芽种子数÷总种子数×100%成活率=成活棵树÷总种植棵树×100%
文档为doc格式