高二数学知识点归纳(15篇)
上学期间,不管我们学什么,都需要掌握一些知识点,知识点就是学习的重点。掌握知识点有助于大家更好的学习。下面是小编收集整理的高二数学知识点归纳,欢迎阅读,希望大家能够喜欢。
高二数学知识点归纳11、解不等式问题的分类
(1)解一元一次不等式、
(2)解一元二次不等式、
(3)可以化为一元一次或一元二次不等式的不等式、
①解一元高次不等式;
②解分式不等式;
③解无理不等式;
④解指数不等式;
⑤解对数不等式;
⑥解带绝对值的不等式;
⑦解不等式组、
2、解不等式时应特别注意下列几点:
(1)正确应用不等式的基本性质、
(2)正确应用幂函数、指数函数和对数函数的增、减性、
(3)注意代数式中未知数的取值范围、
3、不等式的同解性
(5)|f(x)|
(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)
(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)
高二数学知识点归纳2一、不等式
一、不等式的基本性质:
注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。
(2)注意课本上的几个性质,另外需要特别注意:
①若ab>0,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。
②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。
③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。
④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小
二、均值不等式:两个数的算术平均数不小于它们的几何平均数。
基本应用:①放缩,变形;
②求函数最值:注意:①一正二定三相等;②积定和最小,和定积最大。
常用的方法为:拆、凑、平方;
三、绝对值不等式:
注意:上述等号“=”成立的条件;
四、常用的基本不等式:
五、证明不等式常用方法:
(1)比较法:作差比较:
作差比较的步骤:
⑴作差:对要比较大小的两个数(或式)作差。
⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。
⑶判断差的符号:结合变形的结果及题设条件判断差的符号。
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。
(2)综合法:由因导果。
(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……
(4)反证法:正难则反。
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。
放缩法的方法有:
⑴添加或舍去一些项,
⑵将分子或分母放大(或缩小)
⑶利用基本不等式,
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
二、不等式的解法:
(1)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论:
(2)绝对值不等式:若 ,则 ; ;
注意:
(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;
(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
(4)分式不等式的解法:通解变形为整式不等式;
(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(6)解含有参数的不等式:
解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要讨论。
三、数列
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整
体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
……此处隐藏6139个字……则有sin?sin?sinCsin
5、正弦定理的变形公式:
①化角为边:a?2Rsin?,b?2Rsin?,c?2RsinC; abc,sin??,sinC?; 2R2R2R
a?b?cabc???③a:b:c?sin?:sin?:sinC;④. sin??sin??sinCsin?sin?sinC②化边为角:sin??6、两类正弦定理解三角形的问题:
①已知两角和任意一边,求其他的两边及一角.
②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))
7、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.
b2?c2?a2a2?c2?b2a2?b2?c2
8、余弦定理的推论:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)
9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角)
10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C的对边,则:
①若a?b?c,则C?90;②若a?b?c,则C?90;
③若a?b?c,则C?90.
高二数学知识点归纳131.数列的有关概念:
(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。
(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。
(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:
2.数列的表示方法:
(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。
(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。
3.数列的分类:
4.数列{an}及前n项和之间的关系:
5.等差数列与等比数列对比小结:
等差数列等比数列
一、定义
二、公式1.
2.
1.
2.
三、性质1.,
称为与的等差中项
2.若(、、、),则
3.,,成等差数列
1.,
称为与的等比中项
2.若(、、、),则
3.,,成等比数列
(三)不等式
1、;;.
2、不等式的性质:①;②;③;
④,;⑤;
⑥;⑦;
⑧.
小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。
在字母比较的选择或填空题中,常采用特值法验证。
3、一元二次不等式解法:
(1)化成标准式:;(2)求出对应的一元二次方程的根;
(3)画出对应的二次函数的图象;(4)根据不等号方向取出相应的解集。
高二数学知识点归纳14直线、平面、简单几何体:
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);
(2)平行于x轴的线段长不变,平行于y轴的线段长减半。
(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤——Ⅰ、找或作角;Ⅱ、求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
高二数学知识点归纳15(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所
指定的操作。
(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的
算法结构。
条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行
A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。
(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:
①一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
②另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。
注意:
1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。
2在循环结构中都有一个计数变量和累
加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次
文档为doc格式