数学高考知识点归纳15篇
漫长的学习生涯中,说起知识点,应该没有人不熟悉吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。想要一份整理好的知识点吗?以下是小编为大家收集的数学高考知识点归纳,仅供参考,欢迎大家阅读。
数学高考知识点归纳11、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解、
2、在应用条件时,易A忽略是空集的情况
3、你会用补集的思想解决有关问题吗?
4、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5、你知道“否命题”与“命题的否定形式”的区别、
6、求解与函数有关的问题易忽略定义域优先的原则、
7、判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称、
8、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域、
9、原函数在区间[—a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调
10、你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法
11、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示、
12、求函数的值域必须先求函数的定义域。
13、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)、这几种基本应用你掌握了吗?
14、解对数函数问题时,你注意到真数与底数的限制条件了吗?
15、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
18、利用均值不等式求最值时,你是否注意到:“一正;二定;三等”、
19、绝对值不等式的解法及其几何意义是什么?
20、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”
22、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示、
23、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0、
24、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
29、正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
30、三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
31、在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角、异角化同角,异名化同名,高次化低次)
33、反正弦、反余弦、反正切函数的取值范围分别是
34、你还记得某些特殊角的三角函数值吗?
35、掌握正弦函数、余弦函数及正切函数的图象和性质、你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36、函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右—,上+下—”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4—3,即y=2x+5、
(2)方程表示的图形的平移为“左+右—,上—下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)—(y+3)+4=0,即y=2x+5、
(3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k、
37、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38、形如的周期都是,但的周期为。
39、正弦定理时易忘比值还等于2R。
数学高考知识点归纳2(1)先看“充分条件和必要条件”
当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。
但为什么说q是p的必要条件呢?
事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。
(2)再看“充要条件”
若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。
(4)一般地,定义中的条件都是充要条件,判定定理中 ……此处隐藏6918个字……间为(-√p,0)和(0,√p)
7、数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。
高考数学知识点归纳:对数函数性质
定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界。
定点:函数图像恒过定点(1,0)。
单调性:a>1时,在定义域上为单调增函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
对称性:无
最值:无
零点:x=1
注意:负数和0没有对数。
两句经典话:底真同对数正,底真异对数负。解释如下:
也就是说:若y=logab (其中a>0,a≠1,b>0)
当a>1,b>1时,y=logab>0;
当01时,y=logab<0;
当a>1,0
高考数学必考知识点:方差的性质
1.设C为常数,则D(C) = 0(常数无波动);
2. D(CX )=C2 D(X ) (常数平方提取);
证:
特别地D(-X ) = D(X ),D(-2X ) = 4D(X )(方差无负值)
3.若X 、Y相互独立,则
证:
记则前面两项恰为D(X )和D(Y ),第三项展开后为
当X、Y相互独立时,故第三项为零。
特别地独立前提的逐项求和,可推广到有限项。
高考数学必考知识点总结
高考数学必考知识点:判断函数值域的方法
1、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
2、换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。
3、判别式法:若函数为分式结构,且分母中含有未知数x?,则常用此法。通常去掉分母转化为一元二次方程,再由判别式△≥0,确定y的'范围,即原函数的值域
4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
5、反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。
6、单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)
7、数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。
高考数学必考知识点:对数函数性质
定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界。
定点:函数图像恒过定点(1,0)。
单调性:a>1时,在定义域上为单调增函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
对称性:无
最值:无
零点:x=1
注意:负数和0没有对数。
两句经典话:底真同对数正,底真异对数负。解释如下:
也就是说:若y=logab (其中a>0,a≠1,b>0)
当a>1,b>1时,y=logab>0;
当01时,y=logab<0;
当a>1,0
高考数学必考知识点:方差的性质
1.设C为常数,则D(C) = 0(常数无波动);
2. D(CX )=C2 D(X ) (常数平方提取);
证:
特别地D(-X ) = D(X ),D(-2X ) = 4D(X )(方差无负值)
3.若X 、Y相互独立,则
证:
记则前面两项恰为D(X )和D(Y ),第三项展开后为
当X、Y相互独立时,故第三项为零。
特别地独立前提的逐项求和,可推广到有限项。
提升数学成绩的方法
第一部分:学习的方法
一、预习是聪明的选择
最好老师指定预习内容,每天不超过十分钟,预习的目的就是强制记忆基本概念。
二、基本概念是根本
基本概念要一个字一个字理解并记忆,要准确掌握基本概念的内涵外延。只有思维钻进去才能了解内涵,思维要发散才能了解外延。只有概念过关,作题才能又快又准。
三、作业可巩固所学知识
作业一定要认真做,不要为节约时间省步骤,作业不要自检,全面暴露存在的问题是好事。
四、难题要独立完成
想得高分一定要过难题关,难题的关键是学会三种语言的熟练转换。(文字语言、符号语言、图形语言)
第二部分:复习的方法
五、加倍递减训练法
通过训练,从心理上、精力上、准确度上逐渐调整到考试的最佳状态,该训练一定要在专业人员指导下进行,否则达不到效果。
六、考前不要做新题
考前找到你近期做过的试卷,把错的题重做一遍,这才是有的放矢的复习方法。
第三部分:考试的方法
七、良好心态
考生要自信,要有客观的考试目标。追求正常发挥,而不要期望自己超长表现,这样心态会放的很平和。沉着冷静的同时也要适度紧张,要使大脑处于最佳活跃状态
八、考试从审题开始
审题要避免“猜”、“漏”两种不良习惯,为此审题要从字到词再到句。
九、学会使用演算纸
要把演算纸看成是试卷的一部分,要工整有序,为了方便检查要写上题号。
十、正确对待难题
难题是用来拉开分数的,不管你水平高低,都应该学会绕开难题最后做,不要被难题搞乱思绪,只有这样才能保证无论什么考试,你都能排前几名。
文档为doc格式